PRADIS

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РЕШЕНИЮ ЗАДАЧ ГИДРАВЛИКИ

> ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ АВТОМАТИЗАЦИИ МОДЕЛИРОВАНИЯ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В МЕХАНИЧЕСКИХ СИСТЕМАХ И СИСТЕМАХ ИНОЙ ФИЗИЧЕСКОЙ ПРИРОДЫ

ВЕРСИЯ 4.5

оглавление

ГИДРАВЛИКА	3
Лабораторная работа № 1. Дроссель	4
Лабораторная работа № 2. Труба	7
Лабораторная работа № 3. Демпфер	9
Лабораторная работа № 4. Предохранительный клапан 1	13

ГИДРАВЛИКА

Параметры рабочей жидкости в блоке Data1 (рисунок 1):

1. Кинематическая вязкость жидкости при атмосферном давлении и температуре 50°С, сСт (NU0>0)

2. Плотность жидкости при атмосферном давлении и температуре 20°С, кг/м³ (RO0>0)

3. Модуль упругости жидкости при атмосферном давлении и температуре 20 °C, МПа

4. Пьезокоэффициент в экспоненциальной зависимости вязкости от давления, 1/МПа

5. Коэффициент пропорциональности модуля упругости жидкости от давления , 1/МПа

6. Относительное газосодержание жидкости при атмосферном давлении

7. Показатель политропы процесса

8. Термокоэффициент в экспоненциальной зависимости вязкости от давления, 1/°С

9. Коэффициент объемного расширения жидкости, 1/°С

10. Температура жидкости, °С

Рисунок 1. Параметры рабочей жидкости в блоке Data1

Лабораторная работа № 1. Дроссель.

Рассмотрим некий участок гидролинии, например дроссель (рисунок 2).

Рисунок 2. Дроссель

Открываем проект hydraulic DINAMA\examples\labs\hydraulic и загружаем пример throttle.sch (рисунок 3).

Рисунок 3. Схема throttle.sch

На схеме Pin – управляемый источник давления, DRG1 – модель дросселя, TrapeziumSource1 – сигнал трапециевидной формы (задает изменение давления), P1 – датчик управления, Q1 – датчик расхода.

Параметры модели TrapeziumSource1 (рисунок 4):

Po	Ра Изменение свойств компонента						
C	Свойства ПГО						
V	Істочни	к сигнала т	рапециевидно	й формы, циклический			
V	Імя: 🔳	rapeziumSo	urce1				
Г	Свойс	тва					
	Имя	Значение	показывать	Описание	HT		
	VL	0.0	нет	Пассивный уровень	Продолжителы		
	VH	1.0	нет	Активный уровень	1000		
	D	0.0	нет	Начальная задержка	Изменит		
	FT	1.0	нет	Продолжительность переднего фро			
	HT	1000	нет	Продолжительность вершины импул	Показывать		
	BT	1.0	нет	Продолжительность заднего фронта			
	СТ	0.0	нет	Продолжительность цикла			
	I						

Рисунок 4. Параметры модели сигнала

Параметры модели дросселя DRG1 (рисунок 5):

Po	Изменен	ние свойств ком	ипонента		
С	войсте	за ПГО			
Д	россег	ь гидравли	ческий		
И	мя: D	RG1			
Γ	Свойст	гва			
	Имя	Значение	показывать	Описание	FP
	D MDT1 MDT2 FP	0.005 0.7 0.7 Fluid	нет нет нет	условный проход, м коэффициент расхода при развитом коэффициент расхода при развитом Свойства жидкости	Гриід Fluid

Рисунок 5. Параметры модели дросселя

Параметры датчика расхода Q1 (рисунок 6):

Po	а Изменение свойств компонента						
0	Свойства	ПРВП					
F	Расчет масштабированного значения заданной переменной.						
	Имя	Значение	Описание	variable			
	variable	DRG1.I(1)	Произвольная степень свободы.	Произвольная DRG1.I(1)			

Рисунок 6. Параметры датчика расхода

Запускаем моделирование. Получаем графики давления и расхода для компонента дросселя DRG1 (рисунок 7).

Рисунок 7. График давления и расхода

График расхода эквивалентен характеристике дросселя dP/dQ.

Лабораторная работа № 2. Труба.

Рассмотрим пример, где вместо модели дросселя участок трубы DN10 длиной 1 м (рисунок 8).

Рисунок 8. Гидролиния

В проекте hydraulic загружаем пример pipe.sch (рисунок 9):

pipe.sch

Рисунок 9. Схема pipe.sch

На схеме Pin – управляемый источник давления, TRGT1 – модель гидравлического трубопровода, TrapeziumSource1 – сигнал трапециевидной формы (задает изменение давления), P1 – датчик управления, Q1 – датчик расхода.

Параметры трубы TRGT1 (рисунок 10):

Po	а Изменение свойств компонента						
C	войсте	за ПГО					
Г	идравл	ический тру	бопровод, тур	булентный			
И	мя: Т	RGT1					
Γ	Свойст	гва					
	Имя	Значение	показывать	Описание	FP		
	L	1	нет	длина трубопровода, м	Свойства жидкости		
	D	0.01	нет	внутрений диаметр, м	Fluid		
	DELT	0.01	нет	толщина стенки, м	Изменить		
	DELE	0.001	нет	эквивалентная шероховатость,м			
	ET	1e7	нет	модуль упругости трубопровода, Па	Показывать на сх		
	FP	Fluid	нет	Свойства жидкости			
	P0	0.0	нет	Кначальное давление в трубопровс			

Рисунок 10. Параметры трубы TRGT1

Рисунок 11. График давления и расхода участка трубы

Получаем расходные характеристики данного участка трубы

Лабораторная работа № 3. Демпфер.

Рассмотрим пример задачи демпфирования гидроподвески.

Открываем проект hydraulic DINAMA\examples\labs\hydraulic и загружаем пример hydrasuspension.sch (рисунок 12).

Рисунок 12. Схема hydrasuspension.sch

На схеме CLPDG1 – гидроцилиндр, AGG1 – гидроаккумулятор, DRG1 – дроссель, SFV1 – управляемый источник силы, TrapeziumSource1 – источник сигнала трапециевидной формы, X1 – датчик перемещения, который отслеживает процесс демпфирования гидроподвески.

Параметры гидравлического цилиндра CLPDG1 (рисунок 13):

Pa	Изменение свойств компонента				
С	войств	за ПГО			
Г	идравл	ический цил	индр поршнев	зой двустороннего действия	
И	мя: С	I PDG1			
_	Свойст				
	СВОИС		1		DP
	Имя	Значение	показывать	Описание	
	DP	0.1	нет	диаметр поршня, м	диаметр пор
	DS1	0	нет	диаметр штока 1 полости, м	0.1
	DS2	0.02	нет	диаметр штока 2 полости, м	Изме
	DEL	0.01	нет	толщина стенок цилиндра	
	FT0	1.0	нет	сила трения в уплотнениях при отсу-	Показыва
	KF1	0	нет	коэффициент пропорциональности	
	KF2	0	нет	коэффициент пропорциональности	
	GUT	0.5e-4	нет	коэффициент утечек через уплотнен	
	VMS1	0.01	нет	мертвый объем 1 полости, м**3	
	VMS2	0.01	нет	мертвый объем 2 полости, м**3	
	MP	0.01	нет	масса поршня, кг	
	MK	0.01	нет	масса корпуса, кг	
	EC	1e11	нет	модуль упругости 1 рода стенок цил	
	NG	1	нет	условие наличия силы тяжести 📡	
	CU	1e10	нет	жесткость упоров	
	FP	Fluid	нет	Свойства жидкости	
	XS10	0.1	нет	начальное расстояние от поршня до	
	XS20	0.1	нет	начальное расстояние от поршня до	
	IP	-1	нет	направление движения поршня при	
	4			>	Добаві

Рисунок 13. Параметры гидравлического цилиндра

Параметры сигнала TrapeziumSource1 (рисунок 14):

P	Ро Изменение свойств компонента					
	Свойств	ва ПГО				
	Источни	ик сигнала тр	рапециевидно	й формы, циклический		
	Имя: Ті	rapeziumSo	urce1			
[-Свойс	тва				
	Имя	Значение	показывать	Описание	СТ	
	VL	0.0	нет	Пассивный уровень	Продолжительнос	
	VH	10000	нет	Активный уровень	0.0	
	D	0.0	нет	Начальная задержка	Изменить	
	FT	0.1	нет	Продолжительность переднего фро	-	
	HT	1.0	нет	Продолжительность вершины импул	Показывать на	
	BT	1.0	нет	Продолжительность заднего фронта		
	CT	0.0	нет	Продолжительность цикла		

Рисунок 14. Параметры сигнала

Параметры дросселя DRG1 (рисунок 15):

² Изменение свойств компонента						
Свойства ПГО						
россег	ь гидравлич	ческий				
мя: D	RG1					
Свойст	ва					
Имя	Значение	показывать	Описание	FP		
D	0.1	нет	условный проход, м	Свойства жидкости		
MDT1	0.1	нет	коэффициент расхода при развитом	Fluid		
MDT2	0.1	нет	коэффициент расхода при развитом	Изменить		
FP	Fluid	нет	Свойства жидкости	П показывать на с		
	Изменен россел мя: D Свойст Имя D MDT1 MDT2 FP	Изменение свойств ком войства ПГО россель гидравлич мя: DRG1 Свойства Имя Значение D 0.1 MDT1 0.1 MDT2 0.1 FP Fluid	Изменение свойств компонента войства ПГО россель гидравлический мя: DRG1 Свойства Имя Значение показывать D 0.1 нет MDT1 0.1 нет MDT2 0.1 нет FP Fluid нет	Изменение свойств компонента ВОЙСТВА ПГО россель гидравлический мя: DRG1 Свойства Имя Значение показывать Описание D 0.1 нет условный проход, м MDT1 0.1 нет коэффициент расхода при развитом MDT2 0.1 нет коэффициент расхода при развитом FP Fluid нет Свойства жидкости		

Рисунок 15. Параметры дросселя

Запускаем расчет (рисунок 16).

Рисунок 16. График перемещения поршня в цилиндре

В начальный момент времени происходит отрицательное перемещение, это связано с тем, что в начальный момент времени сила равна нулю. Далее сила возрастает до максимума и гидроцилиндр в виде затухающих колебаний демпфирует резкое возрастание усилия на поршень.

Лабораторная работа № 4. Предохранительный клапан.

Рассмотрим пример по моделированию работы предохранительного клапана в составе гидролинии. Открываем проект hydraulic DINAMA\examples\labs\hydraulic и загружаем пример hydroline.sch (рисунок 17).

Рисунок 17. Схема hydroline.sch

На схеме: SVV1 – управляемый источник давления, SinusSource1 – синусоидальный сигнал управления, TRGT1 и TRGT2 – участки модели трубы, KPG1 – предохранительный клапан, земля справа – слив в бак с атмосферным давлением, Pin – входное давление, P_KPG1 – датчик давления на клапане, Q_KPG – датчик расхода воды на первом участке трубы, Q_TRGT2 – датчик расхода воды на втором участке трубы.

Свойства сигнала управления SinusSource1 (рисунок 18). На входе подаются колебания, которые предохранительный клапан должен будет сглаживать.

Ро Изменение свойств компонента					
Свой	Свойства ПГО				
Исто	чник си	гнала с	инусоидальной	і формы	
Имя:	Sinus	Source1			
Сво	йства				
Им	ия Зн	ачение	показывать	Описание	Α
A	2.0		нет	Амплитудное значение	Ампли
T	0.5		нет	Период	2.0
Fi	0.0		нет	Начальная фаза	
V0	3.0		нет	Постоянная составляющая	_
D	0.0		нет	Начальная задержка	Пок
N	0.0		нет	Число импульсов (+:униполярных, -:	
P	0.0		нет	Период повтора импульсов	

Рисунок 18. Параметры сигнала управления

Параметры трубы TRGT1 (рисунок 19) и TRGT2 (такие же, как и для TRGT1).

Po	изменение свойств компонента					
C	Свойства ПГО					
Г	идравл	ический тру	бопровод, тур	булентный		
V	Імя: 📊	RGT1				
Г	Свойст	гва				
	Имя	Значение	показывать	Описание	ET	
	L	1	нет	длина трубопровода, м	модуль упр	
	D	0.020	нет	внутрений диаметр, м	1e11	
	DELT	0.01	нет	толщина стенки, м	Изм	
	DELE	1e-6	нет	эквивалентная шероховатость,м		
	ET	1e11	нет	модуль упругости трубопровода, Па	Показыв	
	FP	Fluid	нет	Свойства жидкости		
	P0	0.0	нет	Кначальное давление в трубопровс		

Рисунок 19. Параметры трубы

Параметры предохранительного клапана КРG1 (рисунок 20).

Po	Ро Изменение свойств компонента				
(Свойств	за ПГО			
K	лапан і	предохрани	тельный гидра	влический	
V	1мя: 🛛 К	PG1			
Г	Свойс	гва			
	Имя	Значение	показывать	Описание	D
	D	0.01	нет	условный проход, м	условнь
	PN	2.0	нет	давление настройки, МПа	0.01
	QMIN	0.01	нет	минимальный расход, л/мин	V
	KP	10000	нет	коэффициент потерь в открытом сс	_
	KU	0.01	нет	коэффициент утечек, л/(МПа*мин)	Показ
	FP	Fluid	нет	Свойства жидкости	

Рисунок 20. Параметры предохранительного клапана

Параметры датчика Q_КРG (рисунок 21):

Ра Изменение	свойств комп	онента	•			
Свойства	ПРВП					
Расчет масштабированного значения заданной переменной.						
Имя	Значение	Описание	variable			
variable k	(PG1.I(1)	Произвольная степень свободы.	Произвольная степень свободы. КРG1.I(1)			

Рисунок 21. Параметры датчика Q_КРG

Параметры датчика Q_TRGT2 (рисунок 22):

Ра Изменение свойств компонента							
Свойства	а ПРВП						
Расчет масштабированного значения заданной переменной.							
СЗначения							
Имя	Значение	Описание	variable				
variable	TRGT2.I(1)	Произвольная степень свободы.	Произвольная степень свободы.				
			TRGT2.I(1)				
			· · · · · · · · · · · · · · · · · · ·				

Рисунок 22. Параметры датчика Q_TRGT2

В блоке Dynamic1 задаем время интегрирования 3 секунды (рисунок 23)

Вывод Свойст	гва					
Динамический анализ						
Имя: Dynamic1						
Свойства						
Имя Значе	ие показывать	Описание	• end			
end 3	нет	Конечное время интегрировани:	Конечное время инт			
method Stoerm	er нет	Метод интегрирования: [Stoerme	3			
outper 1	нет	Количество шагов расчета на од	Изменить			
outvar 1	нет	Режим вывода информации в D				

Рисунок 23. Задаем время интегрирования 3 секунды

Рисунок 24. График давления

На графиках видно, что предохранительный клапан отрабатывает на значении 2МПа, он начинает открываться и сбрасывать во время слива избыточный поток.

Рисунок 25. График расхода

На графике расходов (рисунок 25) видно, что растет расход на участке второй трубы, в момент открытия предохранительного клапана расход остается практически неизменным. Как только клапан закрывается при снижении давления, расход в трубе начинает снижаться соответственно со снижением давления на входе всей гидролинии.